Theoretical Study of Decision Tree Algorithms to Identify Pivotal Factors for Performance Improvement: A Review
نویسندگان
چکیده
Decision tree is a data mining technique used for the classification and forecasting of the data. It is the supervised learning algorithm that follows the greedy approach and works in a top down manner. Decision tree uses white box model approach and classifies the data in a hierarchical structure. It makes data easy to represent and understand. It can handle a large database and works well with both numerical and categorical variables. A variety of decision tree algorithms are proposed in the literature like ID3 (Iterative Dichotomiser 3), C4.5 (successor of ID3), CART (Classification and Regression tree), CHAID (Chi-squared Automatic Interaction Detector). These algorithms have specific mechanisms based on certain criteria’s. The study of these criteria are important and requisite for analysis of DT algorithms. The aim of this paper is to identify and inspect these vital criteria’s or factors of DT algorithms. The major contribution of this review is to provide a path to select a specific factor for improvement of DT algorithm as per requirement or problem.
منابع مشابه
Determining Factors Influencing Length of Stay and Predicting Length of Stay Using Data Mining in the General Surgery Department
Background: Length of stay is one of the most important indicators in assessing hospital performance. A shorter stay can reduce the costs per discharge and shift care from inpatient to less expensive post-acute settings. It can lead to a greater readmission rate, better resource management, and more efficient services. Objective: This study aimed to ident...
متن کاملComparison of Classifier Algorithms in the Identification of Polypharmacy and Factors Affecting it in the Elderly Patients
Introduction: Prescribing and consuming drugs more than necessary which is known as polypharmacy, is both waste of resources and harm to patients. Polypharmacy is especially important for elderly patients; therefore, the factors affecting it must be identified and analyzed properly. Method: In this retrospective study, first, several classifier algorithms, i.e., C4.5, SVM, KNN, MLP, and BN for ...
متن کاملComparison of Classifier Algorithms in the Identification of Polypharmacy and Factors Affecting it in the Elderly Patients
Introduction: Prescribing and consuming drugs more than necessary which is known as polypharmacy, is both waste of resources and harm to patients. Polypharmacy is especially important for elderly patients; therefore, the factors affecting it must be identified and analyzed properly. Method: In this retrospective study, first, several classifier algorithms, i.e., C4.5, SVM, KNN, MLP, and BN for ...
متن کاملA Proposed Model to Identify Factors Affecting Asthma using Data Mining
Introduction: The identification of asthma risk factors plays an important role in the prevention of the asthma as well as reducing the severity of symptoms. Nowadays, the identification process can be performed using modern techniques. Data mining is one of the techniques which has many applications in the fields of diagnosis, prediction, and treatment. This study aimed to identify the effecti...
متن کاملPredicting the Risk of Osteoporosis Using Decision Tree and Neural Network
Introduction: Osteoporosis is one of the major causes of disability and death in elderly people. The objective of this study was to determine the factors affecting the incidence of osteoporosis and provide a predictive model to accelerate diagnosis and reduce costs. Method: In this fundamental descriptive study, a new model was proposed to identify the factors affecting osteoporosis. Data relat...
متن کامل